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Abstract

As technology advances at an ever-increasing pace, Cyber-Physical Systems (CPSs)
are also evolving rapidly. With growing complexity, understanding their decision-
making processes has become increasingly difficult. This thesis explores the poten-
tial of Large Language Models (LLMs) in assisting domain speciőc experts with
generating initial causal models for CPSs.
The core of this thesis is a hybrid workŕow that combines the reasoning capabili-
ties and general knowledge of OpenAI’s GPT-4 with expert input to create causal
models for CPSs. A Smart Charging Garage serves as the focal real-world example
to evaluate the workŕow by comparing LLM-generated results to expert-created
models.
While the results show promising outcomes, particularly in the number of reasonable
answers generated, there are still gaps in precision and recall when compared to
expert-only-developed causal models. These őndings highlight the ongoing need for
expert guidance in causal model creation. However, they also demonstrate that
LLMs can signiőcantly reduce the time and knowledge required for creating initial
causal models in CPS environments.
Future studies should focus on reőning LLM prompting strategies and exploring the
use of other LLMs for broader applications in CPS. Other evaluation metrics and a
larger sample size would also beneőt the goal of generating knowledge in this topic.
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1 Introduction

1.1 Background

In 2007, the European Union (EU) introduced a major plan to improve environmental
sustainability. The initiative aimed to foster more sustainable practices and to accelerate
the development of sustainable technologies [3].
With ecological sustainability being one of the main goals, the EU proposed the "Green
Deal" in 2019, which can be seen as an expansion of the EU’s sustainability strategy from
2007. It states that by 2050 the EU is expected to be carbon neutral. It also includes
the goals of the 2030 Agenda, meaning a "55% reduction of greenhouse gas emissions
compared to 1990 levels" [8].

A key aspect of this progress is its impact on the energy sector, where improving ef-
őciency and reducing environmental harm have become major goals. To achieve this,
new technologies such as Cyber-Physical Systems (CPS) are playing an important role.

"A system with a tight coupling of cyber and physical objects is called cyberśphysical
system (CPS)" [10]. Baheti and Gill emphasize that CPS are becoming more important,
as they are able to combine computational and physical capabilities, which leads to more
possibilities of interaction and functionality. They argue that CPS are expected to play
a signiőcant role in future technological developments across diverse őelds [2].
To effectively carry out the ecological transition required by the EU, it is assumed by
Kojonsaari and Palm that this "development will require the gradual evolution of distri-
bution networks from passive to active and the development of so-called smart grids"[14].
Understanding how these systems behave and make decisions becomes more important,
especially when aiming for efficient and transparent energy management. Smart grids
are becoming an increasingly important element in the effort to revolutionize the energy
sector, steering it toward greater sustainability. smart grids are "of great importance as
they can be integrated with renewable energy resources and contribute towards alleviat-
ing environmental pollution" [26].
As digitalization advances and sustainability efforts grow, smart grids are gaining signif-
icance. With their increasing popularity, various use cases and challenges emerge. This
reveals new research opportunities, previously unknown issues and potential beneőts, not
only, but especially in the energy sector.

1.2 Problem

To better understand the decisions that have been made by the CPS, the term Explain-
able Cyber-Physical Systems (ExpCPSs) has been introduced by Schreiberhuber et al.
[28]. They argue that ExpCPS provide clear explanations of system decisions and behav-
iors, helping users understand and trust complex systems by revealing why certain states
or events occur [28].
This transparency is crucial for effectively managing and controlling CPSs.
Despite the importance of ExpCPS in today’s world across multiple areas, existing meth-
ods that help with explainability are developed for speciőc application areas only. This
narrow focus limits their usefulness and applicability because it requires domain-speciőc
experts to understand the underlying mechanisms of the CPS.
This makes it difficult to use and interpret these systems across different őelds without
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specialized knowledge.

To address this challenge, causal models can play a crucial role in improving the ex-
plainability of CPSs [23]. Pearl explains that by representing the cause-and-effect rela-
tionships within a system, causal models provide a structured way to understand how
different components interact and inŕuence each other. This approach helps uncover
the underlying mechanisms of CPSs, making it easier for both experts and non-experts
to interpret system behavior and identify potential risks or failures. This makes causal
models an important part of building ExpCPSs, as they offer a way to explain system
behavior in a clear and structured manner.

To tackle the problem of causal model creation, Artiőcial Intelligence in the form of
Large Language Models (LLMs) may be useful, as this technology could provide initial
causal models to support interpretability across various CPS domains [12]. Compared to
existing methods that focus on explaining how decisions are made in CPS, Zhang et al.
explain that LLMs offer a model-agnostic approach that can be applied to a wide range
of CPS without requiring domain-speciőc knowledge. A model-agnostic approach means
that the method does not rely on the internal structure or speciőc algorithms used in the
system being explained. Instead, it analyzes observable inputs and outputs to generate
explanations.
This ŕexibility allows LLMs to provide initial insights even for complex models without
the help of domain experts [31].

This thesis explores how LLMs can support the creation, usage, interpretation, and op-
timization of initial causal models for CPSs through a tightly connected workŕow that
includes iterative expert feedback. The insights gained from this research will inform
future work on causal models by examining how effectively LLMs can contribute to their
design, interpretation, and improvement.

1.3 Relevance

Currently, research on hybrid workŕows that combine the capabilities of LLMs with ex-
pert knowledge remains limited. In particular, there is a lack of studies exploring how
effectively LLMs can suggest potential causal relations within CPSs and how accurate
these causal model suggestions are.
There is a need for a quality comparison between causal models developed by experts
with specialized knowledge and those generated by LLMs to evaluate the accuracy, reli-
ability, and applicability of AI-generated models.
This would őll a knowledge gap in the subject of Cyber-physical systems, reducing the
need for experts and therefore lowering development and maintenance costs while also
improving the ease of access.

źThe inherent complexity of an SG makes it increasingly difficult for engineers and oper-
ators to understand the system behaviour and identify root causes of anomaliesł [28].
As the complexity of CPSs will only increase with the ongoing digitalization, the need
for experts that are able to create, maintain and interpret the causal models will rise as
well.
The original way of creating causal models is resource-intensive and requires experts with
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special knowledge to do the work.
By exploring a hybrid approach that combines the general knowledge capabilities of LLMs
with expert feedback, this research aims to streamline the causal model creation process,
making it more accessible and less demanding in a time and money perspective.

1.4 Research questions and objectives of the thesis

The thesis aims to őll the research gap by:

• Developing a hybrid-workŕow that combines LLMs and feedback by expert users

• Implementing a prototype to test and evaluate the performance and accuracy of
the generated causal models on a real life use case

• Investigating the quality of causal models generated by LLMs by comparing them
to models created by experts.

By addressing these aspects, the research will contribute to the development of more
efficient and scalable methods for causal model extraction in Cyber-Physical Systems.

The following research questions are to be answered:

• Research Question 1: To what extent can Large Language Models (LLMs) as-
sist experts in providing the initial causal model within a Cyber-Physical System
(CPS)?

• Research Question 1.1: How do the causal models generated by LLMs compare
to those created by human experts in terms of quality and applicability in real-world
CPS scenarios?

• Research Question 1.2: What are potential challenges when relying on LLMs
for causal model creation?

The objectives of this thesis are to address the insufficient research on how effectively
Large Language Models (LLMs) can suggest potential causal relations within Cyber-
Physical Systems (CPSs).
This involves a comparative analysis of causal models developed by experts versus hybrid
models created through the collaboration of LLMs and experts.
Ultimately, this work contributes to optimizing the energy sector by enhancing sustain-
ability and energy management practices through more efficient and accesible causal
model generation.
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2 Literature Review

The following sections will deőne the core concepts required to understand the research
presented in this thesis. As this research is a highly specialized topic, it is crucial to
precisely deőne key terms in the beginning.

2.1 Cyber-Physical-Systems

2.1.1 Introduction to Cyber-Physical-Systems

Computers and software are most commonly used for tasks such as browsing the inter-
net, writing documents, sending emails or managing personal őnances. However, Lee and
Seshia explain that a majority of computers operate behind the scenes in devices that
are often not even visible. Examples would be the controlling device of a car, a mini
computer inside a microwave or traffic management systems. These systems are called
Embedded systems, and they control a wide range of functions in our daily lives. They
also support systems that monitor environmental conditions, analyze data in scientiőc
research, and facilitate interactive features in smart devices like wearable őtness trackers
and smart speakers. The term for the software that drives these systems is known as
embedded software.
Embedded Systems date back to the 1970s when "they were seen simply as small com-
puters" [16]. Embedded systems have drawn signiőcant attention not only from the IT
sector for their vital role in real-time data processing, enabling instant analysis and reac-
tion in dynamic settings, but also from various other industries. This evolution marked
a shift away from the mostly sequential nature of traditional software processes toward
a more ŕexible approach that enables fast and detailed processing of real-time events.
In summary, embedded systems have played a crucial role in advancing from traditional
computing methods to more dynamic and real-time computation, enabling better man-
agement and digital representation of real-world processes [16].

Baheti and Gill deőned the term Cyber-Physical Systems as "a new generation of systems
with integrated computational and physical capabilities that can interact with humans
through many new modalities" [2]. In other words: Cyber-Physical Systems (CPSs)
are complex systems that combine real-life physical processes with computational algo-
rithms.
However, due to the wide range of applications and interdisciplinary nature of CPSs,
various deőnitions have emerged depending on the perspective and őeld of study. They
highlighted different industries to showcase the numerous application methods that CPSs
hold.
In the medical sector for example, a CPS can be beneőcial by taking over tasks such
as image-guided surgery or ŕuid ŕow control. Another deőnition of what a CPS is, was
introduced by Lee and Seshia. They claim a CPS is "an integration of computation with
physical processes whose behavior is deőned by both cyber and physical parts of the
system" [16]. The focus shifts increasingly toward the seamless integration of physical
systems and computational processes, where each inŕuences the other through constant
feedback mechanisms. Rather than examining these components individually, the real
challenge lies in understanding their mutual dependencies and interactions. This ap-
proach emphasizes the need to analyze how computational models and physical actions
work together dynamically, creating a complex system that cannot be fully grasped by
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studying the elements in isolation.

As there is no single deőnition that őts all cases, it is useful to merge the different
perspectives to create a more comprehensive view of Cyber-Physical Systems.
At their core, CPSs are embedded systems that link physical processes with computa-
tional algorithms, enabling real-time monitoring, control, and feedback. By combining
sensors, actuators, and embedded computing, CPSs facilitate continuous interaction be-
tween the physical and digital domains, where changes in one affect the other. This
dynamic interplay is essential for optimizing operations in non-digital areas , making
CPSs vital for enhancing precision and efficiency in complex environments.

2.1.2 Core Components

As the name suggests, Cyber-Physical Systems consist mainly of a cyber- and a physical
part. Liu et al. ordered the structured a CPS into three main parts. The user layer, the
information system layer and in third, the physical system layer"[17].
The physical system layer includes physical elements, such as actuators, sensors and phys-
ical machines. These components are crucial for every CPS, as they measure and process
physical processes in real time.
Sensors are the physical element that is capturing the event. They gather real time data
from their surrounding environment.
Actuators are adapting their state in real time with information provided by the sensors,
making a direct interaction between the cyber- and the physical world possible. "The
sensors (cyber objects) can be used to monitor the physical environments, and the actu-
ators /controllers can be used to change the physical parameters" [10]. In smart grids,
both types of physical components play a crucial role.

Looking at a Wind Power System for example, a real life instance of a CPS, you can
identify multiple sensors and actuators. A visual representation can be seen in Figure 1.

Figure 1: Wind Turbine CPS, adapted from [10]

Each of those elements has its own distinctive role in the smart grid, helping to digitally
represent the events happening in the physical world. One example would be the wind
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speed sensor located at the base of the revolving shaft of the turbine rotor.
When the rotor turns, the sensor captures this event and sends this information to the
controlling unit of the CPS. This data can now be converted into the knowledge, that
the wind is currently generating a certain amount of energy. The corresponding actuator
would be the Wind Blade Controller. This unit is responsible for stopping the rotor, if a
hardware malfunction is likely.
Looking at the digital counterpart, the information system layer, Liu et al. argue that
it is "mainly responsible for data transmission and processing of data collected from the
physical system" [17].
Hu et al. modeled the cyber part of a CPS in three sub-groups. The Next Generation
Network, as described by Hu et al., is the cyber component responsible for ensuring data
protection and "safety of data transmission" [10]. Here, existing algorithms are also op-
timized to improve the speed of data transmission.

Liu et al. explain the concepts the following way:
The data center is an element that validates the data received by the sensors. If the
validation process has a negative result, the sensor will be instructed by the data center
to retry the data collection process. If however the data validation is positive, the infor-
mation will be stored in the data center.
According to the predeőned rules that have been created by the user, the control center
now sends queries to the data center. Depending on the query results, the data center
structures the information based on controlling strategies. Based on the domain the CPS
operates in, the actuator’s state can now be adapted. The correctness of this sequence is
closely monitored by a real-time controlling mechanism to ensure no data irregularities
or incorrect actuator states. This sequence is in an ongoing loop, closely monitoring the
events happening in real-life in order to quickly adapt to different situations [17].

To clarify this sequence, a simpliőed smart irrigation system provides a useful exam-
ple:
The user input could be to water the plants if the soil is dry. After authentication,
the data center checks the condition of the soil. If it is dry, the connected actuators
are adapted to water the dry areas. If the soil is not dry, the process will be repeated.
Throughout this sequence, the system is constantly being monitored on issues concerning
actuators, sensors or collected data.

Another layer, the so-called User layer "mainly completes the work such as data query,
strategy and safety protection under human-computer interaction". [17] It acts as the
bridge between users and the system itself. It includes web servers, individual devices,
and external tools that allow users to interact with the CPS.
They can send instructions to the control center, request data, and even update con-
trol strategies to improve system performance. In summary, this layer is responsible for
smooth communication and helps to keep the system secure.

2.1.3 Challenges in Cyber-Physical-Systems

"The main obstacle of developing CPS is the lack of a uniőed theoretical framework of
network and physical resources. Signiőcant differences, both technically and culturally,
exist between computer science theory and control theory, which almost extend to all the
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areas of computer and physical systems" [17].
In other words, building CPS is challenging because there’s no uniőed theory to connect
cyber and physical components. Additionally, computer science and control systems take
different approaches depending on their distinct focuses, such as data processing versus
real-time control. Another important part of the design process of a CPS is choosing the
level of abstraction. It needs to be high enough so that changes to different systems can
be made easily without making the process too complex, but still detailed enough so that
the underlying framework is clearly represented.

Liu et al. structure the main difficulties when creating CPS into three categories.
The őrst big challenge is Pattern Abstraction, where they argue that with currently used
programming languages, handling timing, multitasking, and hardware connections is not
reliable or precise enough for complex, synchronized systems. The next issue they see is
Scale and Efficiency, where the main critique is focused on handling large networks with
a high number of sensors with limited energy resources [17]. These systems need efficient
data processing methods to minimize energy use, as power and resource constraints limit
the sensors capabilities. The third and őnal challenge they deőned is the robustness of a
CPS, where the main focus lies on the vulnerability of a CPS against not only to security
attacks but also to issues affecting its reliability and continuous operation.

2.1.4 Smart Grids

Based on the idea of Pagani and Aiello, a power grid refers to a system that transmits
and distributes electricity, serving as a critical infrastructure for modern society [21]. The
traditional power grid has been planned as a rather strict and non-dynamic environment.
Over recent years, especially with factors like efficiency, ecological awareness and techni-
cal advancements, a switch to a more ŕexible approach is needed. Thus, the term Smart
Grid (SG) has been introduced.
As argued by Jha et al., smart grids are CPS-based solutions that combine physical
elements like sensors, actuators, data collection systems, network communication and
control mechanisms to dynamically manage energy ŕow and adapt to different situations
along the entire grid. A characteristic of a SG is its decentralized structure, where not
only electricity, but also data ŕows in multiple directions at the same time [11]. As a SG
is a subclass of a CPS, the underlying framework remains the same, meaning it consists
of a physical and a cyber layer that are interconnected.
Hardware elements like energy sources, sensors, cables for energy transmission and all of
the required material for the energy grid can be classiőed as the physical component.
Algorithms, embedded systems and data analytics for real time decision making and
analysis can be categorized as the Cyber component.

2.2 LLMs

2.2.1 Introduction to LLMs

Language is essential for human communication, self-expression, and interaction with ma-
chines. The growing need for generalized models arises from the increasing demand for
machines to tackle complex language-related tasks, such as translation, summarization,
information retrieval, and conversational interfaces.
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In the last couple of years LLMs "have emerged as cutting-edge artiőcial intelligence
systems that can process and generate text with coherent communication, and generalize
to multiple tasks"[19].

Vidgof et al. argue, that large language models have emerged as a groundbreaking de-
velopment in the őeld of artiőcial intelligence, captivating the attention of researchers,
industry professionals, and the general public alike over the past few years. [30]. Nicholas
and Bhatia state, that these sophisticated models, which are a subclass of Artiőcial Intel-
ligence (AI), have demonstrated remarkable advancements in natural language process-
ing, generating human-like text, and tackling a wide array of tasks that were previously
considered challenging for machines [20].

2.2.2 Architecture of LLMs

Vidgof et al. explain, that at the core of large language models lies the concept of deep
learning, where models are trained on vast amounts of textual data to identify complex
patterns and relationships. This training process often involves unsupervised pre-training
methods, enabling the system to predict text sequences based on learned language struc-
tures and improve its performance through őne-tuning techniques [30].
These models are typically deep neural networks with billions or even trillions of parame-
ters, making them capable of capturing intricate linguistic nuances and generating highly
coherent and contextually relevant text.
Argued by Vidgof et al. LLMs are based on the transformer architecture, which has
become the standard for natural language processing tasks. Transformers utilize an at-
tention mechanism that allows the model to weigh the importance of different words in
a sequence when making predictions. As described by Vaswani et al., the transformer
model’s success lies in its ability to replace recurrent layers with self-attention mecha-
nisms, improving parallelization and enabling efficient training on large datasets. Patil
and Gudivada state that łthe transformer architecture reduced sequential computation
and enabled parallelization, requiring less training time and achieving new state-of-the-art
resultsž [22]. In simpler terms, the transformer looks at all words in a sentence at once and
őgures out which ones matter most, making it faster and better at understanding context.

The architecture typically consists of an encoder and a decoder. The encoder processes
input text, while the decoder generates output based on the encoded information. One
important feature of transformers is the multi-head self-attention mechanism, which al-
lows the model to focus on different parts of the input text simultaneously. As noted in
the text, the "multihead model is therefore able to jointly attend to information from
different representations at different positions over the projected versions of queries, keys,
and values" [22]. Put simply, this means the model can look at different parts of a sentence
in multiple ways at the same time, which helps it better understand meaning and context.

Patil and Gudivada further explain that LLMs can follow different architectural pat-
terns: encoder-only, decoder-only, and encoder-decoder structures. Encoder-only models
like BERT are suitable for tasks requiring a deep understanding of the text, for exam-
ple a classiőcation if an email is spam or not. Decoder-only models, such as GPT, are
autoregressive, meaning they generate the next word in a sequence based on previous
words, making them well-suited for language generation tasks. Encoder-decoder models,
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use a bidirectional attention mechanism in the encoder and unidirectional attention in
the decoder, making them suitable for tasks like translation and summarization.

These models are pretrained on large, unlabeled datasets to learn general language pat-
terns. Pretraining involves objectives like masked language modeling (MLM), where
random words are hidden, and the model predicts them based on the surrounding con-
text. After pretraining, transfer learning allows these models to be őne-tuned for speciőc
tasks, for example Prompt Tuning as presented by Patil and Gudivada.

The use of transformers in LLMs has signiőcantly improved their ability to capture long-
range dependencies in text and has made parallelization possible, reducing training time
and computational costs [22].

2.2.3 Reasoning Capabilities of Large Language Models

Patil and Gudivada state that Large Language Models (LLMs) have shown promising
reasoning capabilities, especially in tasks that require symbolic, commonsense, and arith-
metic reasoning. Techniques like Chain-of-Thought (CoT) prompting allow models to
break down complex problems into intermediate reasoning steps, improving performance
on tasks that involve multi-step calculations, such as math word problems and quantita-
tive reasoning tasks [22].
They discuss however, even with these advancements, LLMs can struggle with highly pre-
cise tasks that demand rigorous step-by-step problem solving, especially in cases where
intermediate steps are missing or not easily derived from the pretraining data.
In areas where explicit reasoning paths can be provided, such as solving technical prob-
lems in mathematics or generating coherent logical chains in speciőc domains like science
or engineering, LLMs have demonstrated strong capabilities.
Furthermore, challenges persist in arithmetic reasoning, where small errors in intermedi-
ate calculations can lead to incorrect results.
LLMs also encounter difficulties in tasks where model hallucination can lead to incorrect
facts being presented as plausible outputs, especially in open-ended or creative reasoning
scenarios. Patil and Gudivada argue that a reason for hallucination can be classiőed as
the situation "when the provided contextual information conŕicts with the parametric
knowledge acquired during pretraining." [22]
Their performance generally improves with the addition of more examples or structured
prompts, though computational costs increase as models are őne-tuned to better handle
such tasks. Overall, while LLMs exhibit solid reasoning in structured environments, their
limitations become apparent in more abstract or imprecise domains.

2.3 Causal Models

In this section, causal models are deőned and their role in representing and analyzing
cause-effect relationships between variables will be explained.

2.3.1 Theoretical foundation of Causal Models

Based on the ideas in Pearl’s work, Causal models are structured frameworks used to rep-
resent and analyze the cause-and-effect relationships between different variables. These
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models help in understanding how changes in one variable can lead to changes in an-
other, allowing researchers to make informed inferences about causal mechanisms [25].
In simpler terms, they show how changes in one variable can directly lead to changes in
another, helping to reveal the structure of the relationships within a system.
Imbens and Rubin explain that it’s important to tell the difference between correlation
and causation when trying to understand real-world problems. They say that causal
models give a stronger base for making conclusions, especially in areas like economics,
social sciences, and health research.
This means, that instead of focusing on just the relationships between variables, it allows
for a more underlying insight. Researchers are able to őnd out why certain effects happen
by using causal models to identify and analyze the underlying causes, rather than simply
observing correlations.

A core foundation of Causal Models are the variables that are being used. They rep-
resent the focal system in the model, acting as a connector between the real life scenario
and the abstracted model. Each variable can inŕuence other variables in a direct or indi-
rect way. Understanding these connections is critical for accurately modeling causation.
A common method of representing these causal effects between variables is the Directed
Acyclic Graph (DAG).
Explained by Feeney et al., DAGs "are a type of graph that illustrates an assumed causal
structure between variables of interest" [7]. In these graphs, variables are represented
as Nodes which are, depending on the causal direction, connected with unidirectional
arrows.
These graphs allow for an easy to understand visualization of a proposed causation be-
tween a Cause and and a following Effect.
Directed Acyclic Graphs (DAGs) are commonly used to visualize causal models because
they clearly show how different factors connect and inŕuence each other. However, there
are many other ways to represent causal relationships.

2.3.2 Existing methods for causal model creation

Explained by Kline, one of the most established approaches to creating causal models is
called Structural Equation Modeling (SEM). In SEM, variables that represent real-world
scenarios can be treated as hypothetical constructs, which helps in analyzing the rela-
tionships between observed and unobserved variables [13].
These hypotheses are then tested against actual data to assess how well the model őts.
This allows researchers to explore possible causal relationships by comparing theoretical
predictions to observed results.

Another important method for creating causal models is the Bayesian Network (BN).
A BN is a graphical model used to represent relationships between variables using proba-
bilities [15]. Pearl explains that in these networks, each variable is shown as a node, and
causal relationships are illustrated with directed edges. Parent nodes directly inŕuence
child nodes, showing clear cause-and-effect relationships [24]. BNs are particularly useful
because they combine prior knowledge and observed data, allowing researchers to under-
stand complex interactions in uncertain environments [5].
A visual example of a BN can be seen in Figure 2. The illustration clearly demonstrates
variables as nodes, with causal relationships depicted by arrows showing the direction
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of inŕuence. For instance, the variable Season inŕuences both Flu and Hayfever, which
subsequently affect symptoms such as Muscle Pain and Congestion [15].

Figure 2: Example of a Bayesian Network (adapted from Koller & Friedman)

As shown, Bayesian Networks are a helpful and clear way to show how different variables
affect each other. Traditional ways of őguring out causal relationships are costly because
they depend heavily on expert knowledge [24]. This reliance on experts makes it im-
portant to look at alternative methods that might make causal inference more accessible
without being so demanding in a cost and time perspective.
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3 Methodology

This chapter explains how LLMs will be tested for creating causal models in a CPSs.
The study follows the Design Science Research (DSR) method, which helps őnd solutions
to real-world problems by developing and testing new approaches [6]. Stated by Hevner,
DSR can be be split into three interdependent cycles. The őrst cycle is called the Rel-
evance Cycle, which has the purpose of connecting the research that is done to real life
problems and actual needs [9]. The idea is to gain value in real life that is based on the
research that was done.
The second cycle, the Rigor Cycle, is there to incorporate existing scientiőc őndings into
the research process. This way, the research will not be started from scratch, but built
on existing knowledge.
The last cycle is the Design Cycle which brings together the other cycles. In this step,
the concrete way of how the research will be performed is deőned. The question of how
the artifact or the result of the research will be obtained is clearly answered here.
To sum it up, synchronizing these three cycles, DSR remains both practically useful
(Relevance) and scientiőcally sound (Rigor). Additionally, solutions will constantly be
challenged and improved (Design) [9].

The main goal of this paper is to evaluate how well a Large Language Model can gener-
ate initial causal models for Cyber-Physical Systems by comparing its output against a
ground truth deőned by human experts. The focus lies on understanding the quality and
reliability of causal models created by the LLM on its own, to evaluate its potential as a
support tool in the early stages of causal model creation.
To enhance the realism of the evaluation, a Smart Charging Garage serves as the use case.

In this study, OpenAI’s GPT-4 will be used as the LLM of choice to extract causal
knowledge from ontology-based data.
GPT-4 has demonstrated advanced language understanding and strong reasoning capa-
bilities. As noted, on a "suite of traditional NLP benchmarks, GPT-4 outperforms both
previous large language models and most state-of-the-art systems" [1], making it a valu-
able tool for the purpose of the study. The data validation and feedback to or from
the experts is improved by the ability to use natural language, as this enables intuitive
reőnements and clearer corrections.
Additionally, GPT-4 has achieved high performance in professional and academic bench-
marks, including "passing a simulated bar exam with a score around the top 10% of test
takers" [1].
These qualities make GPT-4 well-suited for processing structured ontology data and ex-
tracting meaningful causal relationships in Cyber-Physical Systems.

As this paper is part of a larger research project, other studies will also examine how
different LLMs perform in extracting causal knowledge. These future studies will follow
similar methods to compare the models and provide a better overall understanding of
their strengths and weaknesses.

Causal models help us understand how different system states are connected [29], but
creating them manually can be difficult due to hidden dependencies and complex rela-
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tionships [4]. This methodology aims to test whether LLMs can assist in this process and
how well they perform compared to human experts.

3.1 Research Questions

To guide the evaluation, this methodology focuses on three main aspects that build on
the original research questions.
First, it explores whether a LLM can independently generate meaningful initial causal
models from structured data in a Cyber-Physical System, by relying on it’s general knowl-
edge capabilites. The outputs created by the LLM are then compared to an expert-deőned
ground truth to assess how well the model performs in identifying relevant system ele-
ments and causal relations. This comparison focuses on both completeness and correct-
ness, including an analysis across the causal, temporal, and topological dimension.
Finally, the study also aims to identify common challenges that occur when using LLMs
for this task, such as typical errors, misunderstandings of system structure, or unclear
reasoning paths, to better understand the model’s limitations and where expert feedback
is most needed.

3.2 Research Approach

Instead of relying on unstructured text, this study uses a table-based approach.
The tabular data used for the analysis was provided by an industry partner involved in
smart grid operations, speciőcally related to a smart charging garage.
The table provides a structured map of the focal SG, the Smart Charging Garage, listing
key components such as sensors, actuators, or system states in a concise format.

3.3 Workflow for Causal Model Creation

The methodology follows a step-by-step process to generate and reőne causal models us-
ing LLMs. Below are the őve key steps:

Step 1: Data Preparation
The őrst step is organizing the data into a structured format.
Reynolds and McDonell show that clarity and consistency in prompts can better control
model outputs. Presenting data in structured, table-like formats is one way to reduce
ambiguity and achieve that clarity [27].
The structured data includes:

• Sensors and their assigned states.

• Actuators and their relationships with system components.

Step 2: Data Validation
Before generating causal models, the LLM is asked to:

• Summarize its understanding of the uploaded data.

• Identify key system components and their roles.
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• Suggest possible adjustments to the LLM’s interpretation based on expert input.

Step 3: State Type Creation
Building on the validated data, this step focuses on deőning State Types that link ob-
servable properties to the correct platform. These states serve as a foundation for the
causal model by reŕecting realistic conditions in the smart grid.
The key principles of creating these State Types are:

• Clarity: Each state type should distinctly relate an observable property to a valid
platform, ensuring logical consistency.

• Relevance: The state type must add measurable value to the causal analysis,
either by triggering an action or providing necessary context for decision-making.

• Consistency: Align each state type with actual system behavior, maintaining
topological and operational accuracy.

In simple terms, State Types represent speciőc system conditions that help describe what
is happening, where it happens, and why it matters.
After creating these State Types, they provide a strong foundation for causal inference,
making each recognized system state both well-deőned and relevant to real-world condi-
tions.

Step 4: Causal Model Creation
The LLM is prompted to generate causal relationships across three key areas with the
help of its general knowledge capabilities:

• Temporal: Does Event A happen before or at the same time as Event B?

• Topological: What is the relationship between these states based on system struc-
ture?

• Causal: Does State A cause State B?

Step 5: Possible Expert Adjustements
In this step, experts would typically reőne or adjust the created State Types based on
their domain knowledge; however, in this paper, this remains a theoretical part of the
workŕow.

• Experts review LLM-generated causal links to check for correctness.

• Any incorrect links are ŕagged and reőned in an iterative feedback loop.

• The LLM is then re-prompted to improve its output based on expert feedback.
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3.4 Evaluation

To evaluate the qualitiy of the results, precision and recall metrics will be used to assess
the LLM’s performance.
Recall will measure how well the LLM’s State Types and relations match those deőned
by experts. Precision will evaluate how reasonable the LLM’s outputs are, both overall
and across causal, temporal, and topological dimensions. This approach allows for a
structured and measurable comparison between the LLM’s results and the expert-deőned
model.

3.5 Evaluation Criteria

To evaluate how well the LLM-generated causal models align with expert-created mod-
els, this chapter establishes key evaluation criteria that apply to both the identiőcation
of state types and the generation of causal relations. The evaluation will focus on two
aspects: the completeness of the LLM’s output and the accuracy of the generated results.

The completeness of the results will be assessed by comparing the number of state types
and causal relations generated by the LLM to those deőned by the expert. This will indi-
cate whether the LLM under-produces, over-produces, or generates a comparable number
of results.

The accuracy of the results will be examined by mapping the LLM-generated state types
and relations to their expert-deőned counterparts. This will determine how well the LLM
captures key system interactions and whether its outputs align with expert knowledge.
To quantify these aspects, two evaluation metrics will be used: Recall and Precision
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Recall measures how well the LLM-generated results cover the expert-deőned ones and
is calculated as follows:

Recall =
LLM-generated results found in expert model

Total results in expert model

Precision assesses the reasonableness of the LLM-generated results by evaluating their
validity and relevance. Each result was checked one by one by the author, using help
from the LLM and other information sources to judge whether it made sense in the given
CPS scenario. For every result that was classiőed as reasonable, a short written justiő-
cation was added to explain the context and reasoning behind the classiőcation and can
be found in the data őles.
Only results that do not appear in the expert-deőned ground truth are considered for rea-
sonableness. These unmatched results are evaluated individually to determine whether
they still make sense in the CPS context.
Precision is calculated as follows:

Precision =

Reasonable LLM-generated results (Matched results excluded)

Total LLM-generated results

In addition to the overall precision metric, dimension-speciőc precision values are in-
troduced to evaluate the LLM’s performance across causal, temporal, and topological
aspects. Each dimension’s precision is calculated as follows:

PrecisionDimension =

Reasonable LLM-generated results for Dimension

Total LLM-generated results for Dimension

This reőned metric allows for a more detailed assessment of the LLM’s strengths and
weaknesses in accurately identifying relations within each evaluation dimension.

To provide further structure, LLM generated results will be categorized as follows:

• Correct:
Results that fully align with expert deőnitions.

• Reasonable:
Results that are not part of the expert model but could be valid under certain
conditions. These results make logical sense in the CPS context, even if they were
not explicitly deőned by experts.

• Incorrect:
Results that do not logically őt within the system.

To summarize it, Recall was chosen to assess the completeness of the LLM’s results, while
precision highlights the model’s ability to generate valid and reasonable outputs.
By applying these evaluation criteria, this analysis will quantify the quality of the LLM-
generated causal models in terms of their reliability and practical usefulness.
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4 Use Case: Smart Charging Garage as a Cyber-Physical

System

This chapter introduces the Smart Charging Garage (SCG) as a representative Cyber-
Physical System (CPS) and explains its role in evaluating the proposed hybrid workŕow.
The SCG serves as a real-world example where causal relationships between different
system components can be explored and tested with the help of a Large Language Model
(LLM).
The goal of the SCG is to manage the ŕow of energy in this smart grid. It aims to lower
energy costs, avoid overloads, and support sustainability by using smart grid technology,
where automatic decisions help manage energy ŕow and let the system react better to
changing conditions.

4.1 System Overview

The focal smart grid in this thesis is a garage that also acts as an energy management
system. Cars parked in the garage can be charged using electric vehicle (EV) chargers.
The system continuously adjusts energy distribution based on demand, availability, and
storage capacity.
On a functional level, the SCG can be divided into four main parts:

• Energy Consumers ś Electric Vehicle (EV) chargers

• Energy Producers ś Photovoltaic (PV) systems

• Energy Storage ś Battery units

• System Framework ś The building infrastructure that hosts all components

The system operates in real time and must handle constantly changing inputs, such
as the number of EVs being charged or the amount of solar energy produced. A key
concept in this system is the idea of an Envelope Violation, which occurs when certain
operational limits are exceeded. For example, if the combined energy draw from all EV
chargers becomes too high, it may exceed the system’s safe power threshold, triggering
an envelope violation.
This thesis does not focus on exact values that cause an envelope violation but stays on
an abstract level to better illustrate general system behavior and causal relationships.

4.2 Relevance of Approach

Understanding the causes behind different system states is important in a changing envi-
ronment like the Smart Charging Garage. Problems such as overloads or battery issues
need to be traced back to their sources to improve system control. This thesis introduces
a workŕow where GPT-4 creates an initial causal model that is then compared to one
made by experts. The aim is to test whether this method can support explainability and
help with fault detection and energy management in similar systems. Another beneőt
is that when the system setup changes, the model can be adjusted more easily without
starting from scratch.
The Smart Charging Garage is used as the evaluation case, helping to develop and test
the proposed workŕow in a realistic setting.
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4.3 Ground Truth Benchmark

To test how well GPT-4 can extract causal knowledge, a ground truth model of the SCG
has been created manually by experts. This expert-deőned model outlines known causal
relationships between system states. The LLM-generated outputs will later be compared
against this ground truth created by domain experts to evaluate performance in terms of
completeness, correctness and overall usefulness.

4.4 LLM Prompt Configuration Framework

In the LLM prompt, the following predeőned options for relation types were included to
guide the model and improve output quality:

• Causal Relation: "Causes" or "Enables"

• Temporal Relation: "Before" or "Overlaps"

• Topological Relation: "parentPlatform", "siblingPlatform", or "samePlatform"

These options help ensure that the generated causal models are not only logical but also
structurally consistent with the Smart Charging Garage’s design. They were selected
based on the ground truth deőned by experts, in order to narrow down the results gen-
erated by the LLM and make them more directly comparable to the expert model.

In addition, one expert deőned relation was included in the prompt to guide the LLM’s
responses toward a desired outcome.
This relation was the Envelope Violation, which served as an example of how other results
across different parts of the system should be structured and can be seen in Table 1.

StateType ObservableProperty Platform Description

DemandEnvelopeViolation EnvelopeViolation Garage Violation sensor value is above
0 or the active power of the
garage is higher than the de-
őned envelope value.

Table 1: Envelope Violation relation used to guide the LLM output

Another adaption has been made with the expert deőned variable isTriggerState. Even
though it was mentioned in the expert model, this condition was not used during the
process, as it was not essential for generating or evaluating the causal relations.
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5 Hybrid-Workŕow Implementation

This section will present the overall workŕow that combines Large Language Models
(LLMs) and expert input to create a causal model for a CPS. As previously mentioned,
the focal SG will serve as the benchmark. The ultimate goal is that with the help of this
workŕow, the existing causal relations can be found with the help of LLMs.
The mapping will happen on a rather abstract level to allow for later use in other domains,
whereas the development chapter serves as the concrete instance for this paper.
The prompts were improved through trial and error until they gave results that were
suitable for structured causal model evaluation in the CPS context.

5.1 Mapping of hybrid-workflow

5.1.1 Step 1 - Data Input

The starting point of the workŕow can be seen as an introduction of the provided data
to the LLM. A general overview of the focal SG should be provided, and the input data
must be handed over to the LLM. In this step, tabular data from the SG should be in-
serted to establish a clear overview of all relevant properties, sensors, actuators, or other
descriptions. If more data is available, it should also be included in this őrst prompt,
enhancing the LLM’s knowledge about the focal SG.

Various testing has shown that copying the tabular data into ChatGPT, along with the
next prompt, creates a suitable starting point:
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Prompt 1:
I have tabular data, and I would like it transformed into a descriptive natural
language format where each row is expressed as a sentence. The őrst row contains
headers, and subsequent rows contain values. The transformation should follow
this pattern:
Example Input:
Header1 Header2

ItemA TypeX

Example Result:
• ItemA is a type of TypeX.

If a cell is blank or missing, describe it appropriately. For example: łItemX does
not have a type.ž
Use your general knowledge and reasoning capabilities to decide the relation
between the columns. It does not necessarily have to be łis a type of,ž but could
also reŕect a totally different relation depending on the context of the data.

Now transform the following table into the same format:

. . .
Insert your table data here [ ]
Insert a brief summary of the project, the focal smart grid, and related
topics.
. . .

If there are issues, let me know.

To make the workŕow better suited for the specialized needs of the SG, the őrst Feedback
loop is implemented in the őrst prompt. The goal in this step is the veriőcation, that
the input data has been accurately processed and understood by the LLM. This involves
asking the model to summarize the relationships within the data in clear, natural language
sentences and ŕag any ambiguities or inconsistencies. The feedback from this step allows
the experts to review the LLMs understanding of the SG. In this step, őrst corrections
can be made to improve the foundation for the following tasks.

25



5.1.2 Step 2 - State Type Creation

In this step, the goal is the creation of possible System States that could occur in the
focal SG, which will later serve as the foundation for the causal model creation.
The LLM will be prompted to generate plausible System State Types, based solely on the
provided data from the őrst prompt, being Platforms, Sensors and observable Properties.
Since smart grids vary in complexity, a one-size-őts-all prompt is not effective. Instead,
a structured guidance approach is used to direct the LLM towards generating relevant
and meaningful StateTypes.

Some key considerations for the creation of State types can be made:

• Each observable property should be mapped to a possible system state,
that can reŕect real world conditions
This ensures that system behaviors are consistently represented and integrated into
the causal model.

• The state t must match the platform, that the sensor is hosted on
This maintains logical as well as topological consistency and prevents misalignment
between system states and their components.

• Each StateType should provide useful insights about the system.
All states should contribute to system understanding and decision-making.
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Prompt 2:
Using the structured ontology data from the őrst prompt, generate additional State-
Types that describe system conditions based on observable properties and platform
types. Ensure that each StateType reŕects an actual system state that can be used
for causal inference.
Follow this structure:

. . .
Insert a sample state t, including State type Name, observable property,
platform and a short description

. . .

Now, generate additional relevant StateTypes for the Ontology. Ensure accuracy in
platform association and describe each state in detail. The output format must be
a table.

5.1.3 Step 3 - Causal Model Creation

Now that StateTypes have been deőned, the next step in the workŕow is to establish
causal dependencies between them. These relationships help us understand how system
states inŕuence each other within the focal SG.
Once these dependencies are clearly deőned, they create a structured representation of
causality, explaining system behavior in a logical and interpretable way.

To maintain structural integrity and consistency throughout the process, a strict format
must be followed. This format is designed to be compatible with various SGs, ensuring
adaptability across different applications. It functions as a desired output sheet, where
each column deőnes a speciőc condition or rule that the LLM must populate. Following
this structure helps preserve key relationships, including time, topology, and causation
rules, making the causal model adaptable to different SGs.

Dependencies are organized based on the following key considerations:

• Cause (StateType_cause)
The initial system state that triggers the dependency.

• Causal Relation
Deőnes whether the cause enables or causes the effect.

• Temporal Relation
Speciőes the timing of the effect in relation to the cause (e.g., before, overlaps).

• Topological Relation
Deőnes the spatial or hierarchical relationship between states (e.g., samePlatform,
parentPlatform).

• Effect (StateType_effect)
The resulting state that follows from the cause.
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To generate the desired results, Prompt 3 should be used.

Prompt 3:
Using the structured StateTypes from the smart grid, generate causal dependencies
that describe how system states inŕuence one another.
Each causal dependency should follow this format:
. . .
Insert a sample Causal Relation, including Causing state type, Effect
state type and relations in the following dimensions:

• Causal Dimension

• Temporal Dimension

• Topological Dimension

. . .

The options for each relation are as follows:

. . .
Insert available options for each dimension
Example: Temporal Relation can be "Before" or "Overlaps"
. . .

Now, generate additional relevant causal dependencies based on the existing
StateTypes from the smart grid ontology. Both the Causing State and the Effect
State must be strictly selected from the previously generated StateTypes. No new
StateTypes should be created in this step. Only causal dependencies between
existing StateTypes should be established.
Ensure accuracy in temporal and topological associations. If any concept is
unclear, highlight uncertainties and request expert clariőcation to ensure correct
understanding.
Also, after presenting results, you should prompt the following:

"Would you like to:
1. Conőrm that these relationships are correct?
2. Modify any incorrect relationships?
3. Add missing causal dependencies?"

5.1.4 Expert Validation

With the initial causal dependencies generated, the following step is expert validation.
This process ensures that LLM-generated relationships are accurate, logically sound, and
aligned with real-world smart grid behavior.
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Since causal model creation is highly complex, it is unlikely that the LLM-generated
results will be perfect on the őrst attempt. To iteratively reőne the model, this step
provides a possibility, where experts identify errors and are able to suggest corrections.
Through multiple feedback cycles, the causal model is improved until it accurately rep-
resents the system’s behavior and interactions.
This step does not require an additional prompt, as the prompt is formed in a way that
enables this feedback cycle.
The expert is able to reőne the generated Causal Model by formulating improvements in
natural language.
This process can be repeated until the desired output is achieved.

5.2 Implementation of Hybrid Workflow on SCG Use Case

This section presents a step-by-step walkthrough of the causal model extraction process.
The focal smart grid will be used as an instance to showcase the LLMs capabilities in
creating causal models.
To prevent a possible data spill and guarantee neutrality, the prompts have been posted
in a newly created environment with no prior data logs. The Walk-Through has been
done multiple times, but to ensure a clear and traceable evaluation, three instances were
selected to assess overall performance.

5.2.1 Prompt 1 - Data Input

The őrst prompt has been enriched with ontology data from the focal SG as mentioned
in the őrst Prompt.
A small sample of the included tabular data is presented in Table 3 and Table 4.

Platform Platform Type Hosted By Platform

EVChargerA EVCharger AllEVChargers1

EVChargerB EVCharger AllEVChargers1

Battery1 Battery BatteryOverview

Table 2: Small sample of focal Platform, Platform Type, and Hosting Structure

Sensor Hosted By Platform Observed Property

AP_Garage1_Sensor Garage1 ActivePower

EnvelopeViolation_Garage1_Sensor Garage1 EnvelopeViolation

AP_EVChargerA_Sensor EVChargerA ActivePower

Table 3: Small sample of focal Sensor, Hosting Platform, and Observed Property
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The LLM provided a natural language description for each platform, each sensor and the
related observable properties.
For example, the EVCharger1 -Entitity has been identiőed as "a type of EVCharger"
[18]. The topological position has been assigned as well, as EVCharger1 "is hosted by
AllEVChargers1" [18]. Additionally, the related sensor and the connected observable
property have been identiőed the following way:
"AP_EVCharger1_Sensor is hosted by EVCharger1 and observes ActivePower" [18].

The contextual framework has been correctly identiőed, as the LLM was able to lo-
cate this dataset in the context of Energy Management Systems, even going as far as
mentioning smart grids in once instance.
"The dataset represents a structured view of an energy system, likely within a smart grid
or energy management framework" [18].

The data input did not raise errors and the LLM did not prompt for further clariőcation
of input data.

5.2.2 Prompt 2 - State Type Creation

In the next step, the LLM is prompted to create StateTypes based on the provided on-
tology data from the őrst Prompt.
After execution, the LLM generated a wide range of StateTypes, all related to the pro-
vided Sensors, Platforms and observable Properties, while ensuring a certain relevance
towards the causal model generation.
The StateTypes have been created to őt table format, making them better suited for
comparison with the expert-created StateTypes.
Across the walkthroughs, the LLM generated between 8 and 10 different StateTypes.

One StateType was always generated across all iterations. The name of this state dif-
fers in some cases, but it is contextually always similar to ActivePowerExcess_State or
ActivePower_AboveThreshold_State and represents a distinct StateType where "active
power consumption exceeds a predeőned threshold in any EV charger" [18].
The related property has always been identiőed as "ActivePower" and the platform as
"EVCharger".
Table 5 represents one instance of a LLM generated result in tabular data format.

StateType Observable Property Platform Description

Overload_State ActivePower EVCharger Signals that the total active power demand from all EV
chargers has exceeded the safe operational threshold.

Table 4: Representation of LLM output instance

In summary, the generated StateTypes align with the provided entities from the őrst
step, ensuring that each one represents a clear and structured system condition. Their
deőnitions follow a logical format that reŕects the general behavior of the system. The
LLM’s general knowledge contributes additional descriptive details, making each state
easier to interpret and relate to real-world scenarios. This structured presentation also
allows for easier review and potential reőnement by domain experts. Chapter 6 will take
a closer look at how these generated results compare to expert-created StateTypes.
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5.2.3 Prompt 3 - Causal Model Creation

In order to suit the focal SG, the third prompt has been enhanced with concrete options
for each possible relation. In the SCG, the options are the following across all dimensions:

• Causal Dimension:
Causes or Enables

• Temporal Dimension:
Before or Overlaps

• Topological Dimension:
parentPlatform or samePlatform

This individualization improves correctness of results, as the LLM does not generate val-
ues for these options randomly, but rather chooses the best őtting one from given options.

When executing the third prompt multiple times, between 7 and 10 instances of causal
dependencies were created, all in the dimensions of causal, temporal and topological re-
lation, as well as the predeőned options for each dimension.

One example achievement is, that across all three chat-instances, the Battery Overcharge
State appears as a recurring causal factor.
In Chat 1, overcharging leads to an Operational Envelope Violation, indicating that the
battery’s excess charge impacts the overall system. Chat 2 suggests that overcharging re-
sults in Battery Low Efficiency, emphasizing the degradation of the battery performance.
Meanwhile, Chat 3 connects overcharging to Battery Balancing. This could mean that
the system tries to redistribute excess energy across multiple batteries.
Despite these differences, the underlying causal mechanism remains the same: Battery
Overcharge disrupts normal system operations, either through safety risks, efficiency loss,
or the need for balancing measures.

Chat Cause (StateType_cause) Causal Relation Temporal Relation Topological Relation Effect (StateType_effect)
C1 BatteryOvercharge_State Causes Overlaps samePlatform OperationalEnvelopeViolation_State
C2 BatteryOverCharge_State Causes Overlaps samePlatform BatteryLowEfficiency_State
C3 BatteryOvercharge_State Causes Before samePlatform BatteryBalancing_State

Table 5: Causal Relation of Battery Overcharge Across Different Chats

The LLM takes the given statetypes and turns them into causal relations by őguring
out how system conditions affect each other. It usually picks cause states that show
problems like high power demand, inefficiencies, or system overloads, while the effect
states represent the system’s reaction, like balancing power, reducing efficiency, or trig-
gering a violation. This means the LLM builds cause-and-effect links based on how energy
ŕows through the system and when certain limits are crossed.
For temporal relations, the LLM mostly uses "Overlaps" when two states happen at the
same time, like an overcharging battery affecting efficiency while it’s still charging. It ap-
plies "Before" when one state clearly leads to another, like a power deőciency happening
őrst and then causing a demand violation later.
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In topological relations, the model organizes states based on their system connections. It
assigns "samePlatform" when both states belong to the same component, like a battery’s
charge level affecting its efficiency.

Overall, the LLM takes the statetypes and builds structured causal models by linking
them through cause-and-effect, timing, and system structure, creating logical relation-
ships that explain how different system states interact.

6 Performance evaluation

In this chapter, the LLM-generated causal models will be compared to the expert-created
ones to see how well the LLM performs. The focus will be on how accurately the LLM
identiőed cause-and-effect relationships, as well as how it handled timing and system
structure. By looking at the similarities and differences, this evaluation will show where
the LLM performs well and where reőnement in results is still necessary.
In detail, three rounds of Workŕow walkthroughs were conducted, producing three sep-
arate instances of results. As expected, due to the nature of LLMs, the outputs vary
slightly across iterations.
These three result sets now serve as the benchmark for evaluation. They will be compared
against the expert model to assess performance.

6.1 Analysis of results and Comparison to traditional models

6.1.1 Prompt 1 - Data Input

The data input process was completed successfully, with all platforms, sensors, and ob-
servable properties correctly recognized and categorized. No data was lost, misclassiőed,
or incorrectly assigned, ensuring that the system had a solid and accurate foundation.
Because everything was set up correctly, the next step, generating the State Types, could
proceed without any issues. In this case, no further expert-reőnements or adjustments
were necessary, making the input phase smooth and fully reliable.

6.1.2 Prompt 2 - State Type Creation

The next prompt is responsible for generating state types that serve as the foundation of
the causal model creation. The expert-deőned model includes 11 state types, while the
LLM-generated results range between 8 and 10 state types that were suggested across
three walkthroughs. While this indicates that the LLM consistently produced fewer re-
sults, it still managed to capture a portion of the expert-deőned state types. Speciőcally,
5 of the expert-deőned state types were successfully identiőed by the LLM in each in-
stance, resulting in an average recall rate of 63%, 50% and 50% across all walkthroughs.
This demonstrates that the LLM captured on average 54% of the expert-deőned state
types, suggesting potential gaps in identifying core system states.
Table 6 summarizes the number of State Types identiőed.

In addition to evaluating recall, the results were also assessed for their reasonableness.
The LLM-generated state types that were not part of the expert model were analyzed to
determine whether they could still be considered logical and meaningful. Across the three
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Expert Model LLM (1st) LLM (2nd) LLM (3rd)

Total State Types 11 8 10 10

Correct State Types - 5 5 5

Recall (%) - 63% 50% 50%

Reasonable State Types
(GT excl.) - 3 5 5

Reasonable State Types
(GT incl.) - 8 10 10

Precision
(GT excluded) (%) - 38% 50% 50%

Precision
(GT included) (%) - 100% 100% 100%

Table 6: Comparison of LLM-generated and expert StateTypes with precision and recall
metrics

walkthroughs, the number of reasonable state types, including both correct and additional
ones, was 8, 10, and 10. When excluding the correct matches, the number of additional
reasonable state types was 3, 5, and 5. This variation shows that the LLM was able to
generate extra state types that may not be in the expert model but still appear valid.
However, these state types were only classiőed as reasonable after a detailed individual
assessment.
The Precision score, calculated by looking at the number of reasonable state types in
relation to all generated ones, yielded values of 38%, 50%, and 50% across the three
walkthroughs. When including all reasonable results, precision rises to 100% in each
case. These values show that while the LLM’s overall output was limited in quantity, it
still produced only meaningful state types, whether matching the expert model or not.

The LLM’s ability to generate additional state types beyond the expert-deőned ones
underlines its exploratory potential. While all of these suggestions were considered rea-
sonable and represented plausible system behavior, they still required individual review.
This exploratory nature has both beneőts and risks: the additional state types could
reveal overlooked aspects of the system and increase model completeness, but expert
validation remains necessary. Overall, these results show that LLMs can provide cre-
ative and helpful suggestions that may support a deeper understanding of complex CPS
behavior.

6.1.3 Prompt 3 - Causal Model Creation

This phase of the evaluation focused on analyzing the relations generated by the LLM in
comparison to the expert-deőned model. This evaluation required an additional matching
step to align LLM-generated StateTypes with their corresponding expert-deőned coun-
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terparts. This was necessary to ensure that relations between matching StateTypes could
be fairly compared.

Table 7 presents an overview of the number of relations generated by the expert and the
LLM models:

Expert Model LLM (1st) LLM (2nd) LLM (3rd)
Total Relations 10 7 10 9

Relations Found
from Expert Model - 1 1 0

Recall (%) - 14% 10% 0%

Table 7: Comparison of the number of relations identiőed by the expert and LLM models

The expert model contained 10 relations, while the LLM model generated between 7 and
10 relations across its three instances.
Although the total number of relations was similar, the low recall values (14%, 10%,
and 0%) indicate that only a small fraction of the expert-deőned relations were correctly
identiőed by the LLM, meaning the correct Causal Statetype, as well as the correct Effect
Statetype has been identiőed. A relation is only counted as a match if both the cause and
effect State Types are present among the State Types deőned in Step 2. This suggests
that the LLM struggled to reconstruct the expert’s structured understanding of causal
interactions.

In analyzing the identiőed relations, one key observation is that only one causal rela-
tion was correctly identiőed across the three walkthroughs. In both cases (Chat 1 and
Chat 2), the LLM correctly established a causal connection involving high charging load
and overload conditions. However, the details of these connections reveal some nuances
worth exploring.

In Chat 1, the identiőed relation connects the state "EVChargingHighLoad_State" to
"Overload_State". This causal link was correctly identiőed, aligning with the expert
model. The expert-deőned relation originally describes that excessive EV charging ac-
tivity may result in system overload due to high power demand. The LLM’s result
correctly reŕects this dependency, suggesting that the model was able to infer the con-
nection based on observable behavior patterns. Despite the correct causal identiőcation,
the LLM mismatched some structural details, notably misclassifying the topological re-
lationship. While the expert model identiőed this as a parent-platform dependency, the
LLM classiőed it as a same-platform relation. This suggests that although the LLM
understood the causal dependency, it oversimpliőed the platform structure, potentially
reŕecting its limited understanding of the system’s hierarchy.

In Chat 2, a slightly different but still correct relation was identiőed, connecting "EVCharg-
erOverload_State" to "EVChargingCongestion_State." This causal relationship is simi-
larly accurate, as excessive charger load can lead to congestion in EV systems. The LLM
correctly matched the causal and temporal dimensions of this relation. However, like in
Chat 1, the topological relation was incorrect, classiőed again as a same-platform relation
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instead of the parent-platform structure deőned in the expert model.

Both cases reveal that while the LLM showed some success in recognizing meaningful
causal links, there was a recurring issue with topological misclassiőcation. This pattern
suggests that the LLM may rely more heavily on the semantic similarity of state types
rather than correctly interpreting their structural roles in the system. Consequently, while
the causal relations generated by the LLM provide valuable insights, they often require
further reőnement, especially when it comes to understanding hierarchical dependencies.

Beyond relation matching, an additional step was taken to evaluate the reasonableness
of the LLM-generated relations. Even if a relation was not present in the expert model,
it was examined to assess whether it was logically sound or plausible. Table 8 shows the
number of reasonable relations and the corresponding precision values.

Expert Model LLM (1st) LLM (2nd) LLM (3rd)
Reasonable Relations 10 4 6 4
Precision (%) - 57% 60% 44%

Table 8: Evaluation of reasonableness and precision in the generated relations

The LLM models showed varying precision values (57%, 60%, and 44%) across itera-
tions. This indicates that on average 54% of the LLM-generated relations made logical
sense, even if they did not directly match the expert-deőned model. Some of the newly
generated relations introduced by the LLM, while reasonable, reŕected alternate system
interpretations.

The evaluation revealed differing patterns in the distribution of causal, temporal, and
topological relations.The LLM demonstrated strong performance in identifying causal
and topological relations, with precision values averaging 85% , and 88% respectively.
However, the LLM showed improved accuracy in detecting temporal relations, achieving
the highest precision average of 89%. This suggests that while the LLM effectively iden-
tiőes straightforward cause-effect relationships and topological dependencies, it performs
even better in identifying temporal dependencies that align with the GT.
Despite these positive outcomes, the results also indicate some inconsistency across the
three walkthroughs. While causal and topological precision remained relatively stable,
temporal precision ŕuctuated signiőcantly in each iteration, ranging from 80% to 100%.
Even though the highest average Precision has been achieved in this dimension, the
variability highlights the LLM’s inconsistent ability to recognize temporal structures,
reinforcing the need for expert oversight when assessing timing-based dependencies.
In addition to evaluating overall precision, a more detailed assessment was conducted to
measure precision across the three evaluated dimensions: causal, temporal, and topologi-
cal relations. This dimension-speciőc evaluation provides further insights into the LLM’s
strengths and weaknesses in generating meaningful relations.

Table 9 summarizes the precision values for each dimension across three walkthroughs:
The results show that causal precision values ranged from 80% to 89%, with an average
of 85%. Temporal precision varied between 80% and 100%, achieving the highest con-
sistency with an average of 89%. Lastly, topological precision exhibited values between
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LLM (1st) LLM (2nd) LLM (3rd) Average
Precision Causal 86% 80% 89% 85%
Precision Temporal 86% 80% 100% 89%
Precision Topological 86% 90% 89% 88%

Table 9: Precision values across causal, temporal, and topological dimensions

86% and 90%, resulting in an average of 88%.

These results indicate that while the LLM performs consistently across all three dimen-
sions, its average accuracy in identifying temporal relations was slightly higher than in
the other dimensions. The observed stability in causal and topological precision suggests
that the LLM demonstrated a reasonably strong understanding of cause-effect dependen-
cies and spatial relationships within the system, whereas it is limited within the Temporal
category.

However, the variation in precision scores further emphasizes the LLM’s inconsistent per-
formance and highlights the importance of expert validation to ensure model reliability.
The recurring misclassiőcation of topological relations highlights a signiőcant limitation in
the LLM’s understanding of system structure. In multiple instances, the LLM incorrectly
assigned same-platform dependencies where the expert model deőned parent-platform
links. This repeated error suggests that the LLM relies more heavily on surface-level pat-
terns than on accurately recognizing hierarchical dependencies. Such misclassiőcations
may result in an oversimpliőed model structure, potentially obscuring critical control hi-
erarchies. Addressing this limitation is essential for improving the LLM’s reliability in
future implementations.

In conclusion, the LLM-generated relations provide a valuable exploratory starting point
but remain incomplete in reconstructing the expert-deőned structure. While some newly
introduced relations appear reasonable and could provide insights into alternate system
behaviors, expert review and reőnement are essential to ensure that the resulting model
truly reŕects real-world behavior. The LLM’s ability to capture known relations remains
limited, highlighting the need for improved guidance or iterative adjustments in future
applications.

6.2 Summary of Findings

The evaluation of the LLM’s performance reveals mixed results, highlighting both its
strengths and weaknesses in generating causal models.
On the positive side, the LLM successfully identiőed some expert-deőned state types and
managed to create a number of reasonable new state types. This shows that there is the
potential to identify key system elements and even introduce ideas that may have been
overlooked by experts or could otherwise be useful.
However, the ability to fully capture the expert-deőned model was limited, with recall
rates showing that less than half of the expected state types were identiőed. This in-
dicates that the LLM struggles to provide a complete and reliable overview of system
behaviors.
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Additionally, the quality of these results was inconsistent, with precision scores ŕuctuat-
ing signiőcantly across different walkthroughs. While some results were reasonable and
helpful, others lacked relevance or correctness, showing that the LLM’s performance is
not stable.

The LLM was even less reliable when it came to generating causal relations. Only a small
fraction of expert-deőned relations were correctly identiőed, revealing signiőcant gaps in
the LLM’s understanding of the system’s structure.
Despite this, the LLM occasionally produced reasonable new relations that were not part
of the expert model, demonstrating some creative potential. This exploratory behavior
suggests that the LLM can provide new insights, but these ideas require expert evaluation
to ensure they make sense.
A recurring issue throughout the evaluation was the LLM’s difficulty in understanding
the system’s structural dependencies. It frequently misclassiőed key relationships, es-
pecially when distinguishing between parent-platform and same-platform dependencies.
This weakness reduces the reliability of the LLM’s output and limits its usefulness with-
out careful expert review.

With expert interaction, these issues are avoidable. Expert guidance can help reőne the
LLM’s outputs, correct misclassiőcations, and ensure that generated state types and re-
lations align more closely with real-world system behaviors.

In conclusion, the LLM showed potential in suggesting new ideas and highlighting possi-
ble system dynamics, but its overall performance was unreliable. Its inconsistent results
and tendency to overlook key system components make it challenging to rely on without
expert oversight.
Future improvements may enhance the LLM’s ability to deliver more stable and compre-
hensive results, but for now, expert intervention remains crucial to ensure accuracy and
reliability.

7 Discussion

7.1 Interpretation of Key Findings

The key őndings of this research have been addressed in detail in the previous chapter.
Overall, the LLM demonstrated some capability in identifying expert-deőned state types
and generating reasonable new system insights. However, it struggled with consistency,
accuracy, and understanding system structure. While its exploratory nature provided
some value, the LLM’s incomplete results highlight the need for expert involvement to
ensure reliability.

7.2 Practical Implications

The őndings of this study offer important insights for both practitioners and researchers.
Practitioners working with Cyber-Physical Systems (CPS) may őnd value in using LLMs
as a tool to accelerate the early stages of causal model creation. The LLM can serve as
a brainstorming tool, generating initial ideas that experts can reőne and validate. This
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may reduce the time and knowledge required to build initial causal models, especially in
complex CPS environments where system dynamics are challenging to analyze. However,
given the LLM’s inconsistent precision and recall rates, expert supervision is essential.
By guiding the model, practitioners can improve its reliability, correct misclassiőcations,
and ensure that generated models align with real-world behavior.

For researchers, these őndings reveal valuable insights for improving hybrid workŕows
that combine LLM outputs with expert intervention. The LLM’s creative yet unstable
results highlight the need for improved integration techniques. Future research can fo-
cus on developing reőned prompting strategies that guide the LLM toward producing
more accurate and structured causal models. Additionally, designing clear frameworks
for expert feedback will be crucial in enhancing the hybrid workŕow’s effectiveness. By
improving these processes, researchers can create more reliable methods for integrating
LLMs into CPS model development.

7.3 Limitations

While this research offers useful insights, several limitations should be acknowledged.
First, the LLM’s performance was evaluated using a limited number of walkthroughs,
which may not fully represent its potential capabilities or weaknesses.
Additionally, the evaluation criteria being focused on precision and recall, may overlook
other important aspects of causal model quality, such as model interpretability or com-
plexity.
Lastly, the expert intervention process itself was not deeply examined, meaning further
investigation into optimal expert-LLM collaboration strategies is necessary. Even though
in theory experts could have improved the model, the evaluation was performed upon a
model that was not ajdusted by experts, but relied solely on the LLM outputs.

7.4 Recommendations for Future Work

To address the identiőed limitations and improve the LLM’s performance in causal model
creation for CPSs, several future research directions are recommended:

• Reőning LLM prompts to improve accuracy and ensure outputs better align with
expert expectations

• Developing structured frameworks that enhance expert-LLM collaboration, en-
abling them to efficiently guide and reőne the LLM’s outputs

• Increasing the amount of walkthroughs to increase the sample size

• Performing a similar performance assessment of causal model extraction with other
LLMs
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8 Conclusion

This thesis set out to explore the potential of LLMs in supporting causal model creation
within CPSs. Using a Design Science Research approach, the study combined theoretical
insights with practical experimentation to assess whether LLMs can effectively assist
experts in building initial causal models. The őndings provide important insights into
both the capabilities and limitations of LLMs, along with practical recommendations for
improving their performance.
CPS environments are increasingly complex, creating a growing demand for improved ex-
plainability solutions. Existing methods for causal model creation often require extensive
expert knowledge, making them time-consuming and costly.
LLMs were presented as a potential solution to provide initial model insights, reducing
the reliance on expert knowledge as well as improving accessibility. While LLMs pos-
sess promising reasoning capabilities, their reliability in the structured context of CPS
remained uncertain.
To evaluate the LLM’s potential, a hybrid workŕow was designed that integrates LLM-
generated suggestions with expert validation. By structuring the process into distinct
phases, the data input, state type creation, and causal model generation, the workŕow
aimed to balance the exploratory potential of LLMs with the necessary expertise to ensure
accuracy. A Smart Charging Garage served the use case, providing a practical environ-
ment to assess the LLM’s performance.

The study addressed the following research questions:

• Research Question 1:
To what extent can Large Language Models (LLMs) assist experts in providing the
initial causal model within a Cyber-Physical System (CPS)?

The evaluation revealed that while the LLM demonstrated some capability in identi-
fying expert-deőned state types and generating new insights, its overall performance
was inconsistent. Recall rates showed that less than half of the expert-deőned state
types were successfully identiőed. Allthough the LLM occasionally produced cre-
ative insights, its unstable output quality limits its independent application. Never-
theless, the LLM’s ability to produce reasonable new insights that could be classiőed
as useful, emphasizes its potential as a valuable support tool in the early phases of
model development.

• Research Question 1.1:
How do the causal models generated by LLMs compare to those created by human
experts in terms of quality and applicability in real-world CPS scenarios?

The LLM was not able to fully reconstruct the expert-deőned model, but it demon-
strated the ability to generate reasonable and relevant state types and relations
that reŕected plausible system behavior. Although many expert-deőned elements
were missed, the appearance of new, meaningful suggestions points to the LLM’s
potential to contribute creative ideas. These ideas, while not always accurate, could
support and enrich expert-driven modeling when reviewed and reőned through ex-
pert input.
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• Research Question 1.2:
What are potential challenges when relying on LLMs for causal model creation?

The study identiőed signiőcant challenges in precision and consistency. The LLM
often misclassiőed state types and incorrectly linked causal dependencies. Despite
this, the model occasionally produced new insights that experts could build upon.
The őndings underscore the importance of expert oversight to őlter and improve
the LLM’s outputs.

The LLM’s exploratory behavior introduces both risks and opportunities. While its cre-
ative outputs may reveal overlooked system behaviors, expert guidance remains crucial to
correct errors and reőne misclassiőed relations. For practitioners, this means that LLMs
can be useful in accelerating early causal model development but should not yet be relied
upon without expert supervision.
For researchers, the study highlights the need to improve hybrid workŕows, reőne LLM
prompting strategies, and develop clearer frameworks for integrating expert feedback.

This thesis concludes that while LLMs show promise in supporting causal model genera-
tion, their current limitations prevent them from fully replacing expert-driven methods.
However, with reőned prompting techniques, improved expert interaction processes, and
enhanced model understanding of CPS structures, LLMs may become a valuable tool
in the future. By continuing to explore these improvements, future research can further
bridge the gap between LLM capabilities and expert-driven causal modeling, ultimately
enhancing the development of scalable and efficient solutions for CPS explainability.

40



9 Access to Data Files

If you wish to access the complete evaluation data, including detailed results and addi-
tional insights, please contact the author via email.

Author: Maurer, Paul
Email: h12124850@s.wu.ac.at
Orcid-ID: https://orcid.org/0009-0003-7008-027X
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